
PHP
Module - 1

Why PHP?

Introduction

• Officially, PHP stands for “PHP: Hypertext Preprocessor”

(recursive acronym) but it is also still known around the

world by its original name, Personal Home Page.

• PHP is an open source, interpreted, object oriented and

server side scripting language which helps us to build web

applications.

• Created by Rasmus Lerdof in 1994

• Recent Version 8.2

Features

• Simple and Easy to use

• Open source Software

• Loosely typed Language

• Cross-platform Compatible

• Flexibility

• Fast and Effective Performance

Installation

• You Need

• A Web Server

• A Database

• A PHP Parser

Server Stands for Platform

WAMP Windows, Apache, MySQL, PHP Windows

LAMP Linux, Apache, MySQL, PHP Linux

MAMP MAC, Apache, MySQL, PHP MAC

SAMP Solaris, Apache, MySQL, PHP Solaris

XAMP Cross, Apache, MySQL, PHP Cross Platform

Basic Syntax

• PHP Tag: <?php ?>

• Semicolon: Every PHP statements end with semicolon (;).

• Comment Line:

o // - For single line comment

o # - Can also be used for single line comment

o /* ……. */ - For multiline comment

• The $ symbol: In PHP $ symbol is used in front of all variable.

• File Extension: PHP file must be saved with the extension “.php”.

Older PHP file extension includes - .php3, php4, .php5 etc

HELLO WORLD

<!DOCTYPE html>
<html>
<head>

<title>PHP Ex</title>
</head>
<body>
<h1>This is a PHP Script</h1>

<?php
echo “Hello World!”;

?>

</body>
</html>

echo & print

echo print

Language construct Language construct

void echo(string $arg1,string $arg2,……) int print(string $arg)

Faster Slower

Can’t be a part of an expression. Gives
Parse Error.

Can be part of an expression
<?php
$a = 10;
$b = 20;
$a > $b ? print "A is greater" : print "B is
greater";
?>

VARIABLE

• A variable is PHP is a name of memory location that holds data
temporarily.

• In PHP, as in other languages, we can assign the data to variable.

• PHP is a loosely typed language and automatically converts the variable to
its correct data type.

• Syntax: $var_name = value

• Ex:
<?php

$var = 123;
echo gettype($var); //integer
$var = "php";
echo gettype($var); //string

?>

Variable Naming Rules

• Variable names must start with a letter of the alphabet or the _

(underscore) character provided it is not a PHP reserved word.

• Variable names can contain only the characters a-z, A-Z, 0-9, and _

(underscore).

• Variable names may not contain spaces. If a variable must comprise

more than one word, it should be separated with the _ (underscore)

character (e.g., $user_email).

• Variable names are case-sensitive. The variable $High_Score is not

the same as the variable $high_score.

Reserved Keywords

VARIABLE SCOPE

• Local Variable: Created with in a function and can be accessed inside

the function only.

• Static Variable: A special local variable, that does not looses the

value even after execution leaves the scope.

• Global Variable: Declared outside the function and can be accessed

anywhere in the script. Use global keyword to declare.

• Super Global Variable: Special global variable that can be accessed

outside the script. Ex: $_GET, $_POST, $_REQUEST, $_FILES,

$_SESSION

CONSTANT

• A constant is a variable whose value cannot be changed at runtime.

• PHP constants are generally defined by using define() function.

• PHP constant follow the same PHP variable rules.

• Conventionally, PHP constants should be defined in uppercase

letters.

• Ex:

<?php

define("PI",3.14159);

echo PI;

?>

MAGIC CONSTANT

• Magic constants are the predefined constants in PHP which get

changed on the basis of their use. They start with double underscore

(__) and ends with double underscore.

• They are similar to other predefined constants but as they change

their values with the context, they are called magic constants.

<?php
echo “File Path is “.__FILE__;
echo "

";
echo "Current line number is “.__LINE__;
?>

Ex:
• __LINE__ : Represent the current line number of the file
• __FILE__: Represent the full path and file name of the file.
• __FUNCTION__: Represent the function name where it is

used.
• __CLASS__: Represent the class name where it is used.
• __METHOD__: Represents the name of the method where it

is used.

DATA TYPES

• PHP store the data in its proper format without letting the user
out specify the data’s type. PHP supports 8 primitive data types
which can be further classified into 3 types.

Scalar Type

• integer : Holds number like -1, 1 ,0

• float: Holds floating point number

• boolean: Holds True / False value

• string: Holds text

Compound Type

• Array: named and indexed collection of

other variable

• Object: are instances of user define

classes

Special Type

• Resource: are special variable that holds reference to

resources external to the PHP

• NULL: Holds NULL value

OPERATOR

Operator Type Operators

Arithmetic Operator + - * / % **

Array Operators + (Union) == (Equality) !=(inequality)

Assignment Operator = += -= *= /=

Bitwise Operator &(AND) |(OR) ^(XOR) ~(NOT)

Comparison Operator == ===(Identical) != > < >= <=

Conditional Operator ?:

Incrementing / Decrementing

Operator

$X++ ++$X $X-- --$X

Logical Operator && || ! and or xor

String Operator . (concatenation) .=(Concatenation assignment)

Decision Making & Loops

FUNCTION

• A definition starts with the word function.

• A name follows, which must start with a letter or underscore,
followed by any number of letters, numbers, or underscores.

• The parentheses are required.

• One or more parameters, separated by commas, are optional.

• Function names are case-insensitive

Syntax:
function function_name(parameters){

// Block of code
}

<?php
//Defining a function
function welcome(){

echo "Welcome to the world of PHP";
}

//call a function
welcome();
?>

FUNCTION

• In PHP we can pass the function argument in 4 ways –

Call by value

Call by reference

Default argument

Variable length argument

• Call By Value:
<?php
function sum($x, $y){

return $x +$y;
}

$a = 10;
$b = 20;
echo "Sum = ".sum($a, $b);

?>

FUNCTION

Call By Reference:

• It is possible to pass arguments to functions by reference.

• A reference to the variable is manipulated by the function rather than a
copy of the variable's value.

• We can pass an argument by reference by adding an ampersand to the
variable name in either the function call or the function definition.

• Ex:

<?php
function add(&$x, &$y){

$x = $x + $y;
}

$a = 10;
$b = 20;
add($a, $b);
echo "Sum = ".$a;

?>

FUNCTION

Default Argument:

• PHP support default argument as other language like C++.

• Parameters with default arguments must be the trailing parameters in

the function declaration parameter list.

• Ex:

<?php

function add($a,$b,$c=0){

return $a+$b+$c;

}

echo "Sum=".add(1,2);

echo "
Sum=".add(1,2,3);

FUNCTION

Variable Length Argument:

• PHP 5.6 introduced variable-length argument lists (a.k.a. varargs, variadic
arguments), using the ... token before the argument name to indicate
that the parameter is variadic, i.e. it is an array including all supplied
parameters from that one onward.

• Ex:

function add(...$nums){
$sum=0;
for($i=0; $i<count($nums); $i++){

$sum+=$nums[$i];
}
return $sum;

}

echo "Sum=".add(1,2);
echo "
Sum=".add(1,2,3);

STATIC VARIABLE

Ex:

<?php
function counter(){

static $count=0; //static variable

$count++;

echo "
Counter value ".$count;

}

counter();

counter();

counter();

?>

ARRAY

• Arrays are collections of data items stored under a single name.

• PHP array can store heterogeneous data.

• There are three types of array in PHP –

 Indexed or Numerical array

Associative array

Multidimensional Array

NUMERICAL ARRAY

• An array with a numeric index.

• These arrays can store numbers, strings and any object but their
index will be represented by numbers.

• By default array index starts from zero.

• Indexed array can be defined in two ways.
By using the array function- $arr=array(1,2,3,4,5);

By manually accessing the array index - $arr[0]=1; $arr[1]=2; $arr[2]=3;

• An array element can be accessed or modified by using the array
index.

• Ex:

$arr=array(“BCA”, “BBA”, “MCA”, “MBA”);

echo $arr[1]; //BBA

$arr[1]= “B.Tech”;

echo $arr[1]; //B.Tech

NUMERICAL ARRAY

Handling array using for Loop:

<?php

$arr=array(10,20,30,40,50);

for($i=0;$i<count($arr);$i++)

echo $arr[$i]," ";

?>

O/P: 10 20 30 40 50

Handling array using foreach loop:

<?php

$arr=array(10,20,30,40,50);

foreach($arr as $a)

echo $a." ";

?>

O/P: 10 20 30 40 50

ASSOCIATIVE ARRAY

• The associative arrays are very similar to numeric arrays in term of

functionality but they are different in terms of their index.

• Associative array will have their custom index (as string mostly) so

that you can establish a strong association between key and values.

• The => operator is used to create key/value pairs in array.

• The item on the left of the => is key and the item on the right is

the value.

• Create Associative Array:

• $arr=array($key1=>$value1,$key2=>$value2, $key3 => $value3)

• $arr[key1] = value1; $arr[key2]=value2; $arr[key3]=value3;

• Ex:

• $arr=array("Anil"=>20,"Sunita"=>21,"Bimal"=>19,"Sam"=>21,"Tom"=>20);

ASSOCIATIVE ARRAY

Accessing associative array using foreach loop:

$arr=array("Anil"=>20,"Sunita"=>21,"Bimal"=>19,"Sam"=>21,"Tom"=>20);

foreach($arr as $name => $age)

echo "Age of $name is $age
";

O/P:

Age of Anil is 20

Age of Sunita is 21

Age of Bimal is 19

Age of Sam is 21

Age of Tom is 20

MULTIDIMENSIONAL ARRAY

• PHP multidimensional array is also known as array of arrays.

• It allows you to store tabular data in an array.

• PHP multidimensional array can be represented in the form of
matrix which is represented by row x column.

• Ex:

<?php
$arr = array(

array(1,2,3),
array(4,5,6),
array(7,8,9)

);
print_r($arr);
echo $arr[0][2];
echo $arr[2][1];

ARRAY FUNCTIONS

Function Use

array array(value1, value 2..) Create and returns an indexed array

array array(k1=>v1,k2=>v2…) Create and returns an associative array

int count(array) Count the number of items in the array

min(array) Returns the minimum value of an array

max(array) Returns the highest value in an array

array_sum(array) Returns the sum of the values in an array

bool sort(array) Sort an indexed array in ascending order

bool rsort(array) Sorts an indexed array in descending order.

bool asort(array) Sorts an associative array in ascending order, according to the

value

bool arsort(array) Sorts an associative array in descending order, according to

value

ARRAY FUNCTIONS

Function Use

bool ksort(array) Sorts an associative array in ascending order according

to the key

bool krsort(array) Sorts an associative array in descending order

according to key

array array_reverse(array) Returns an array in reverse order

array_search($item, $array)
Searches an array for a given value and returns the

key or false if not found

bool in_array($item,array) Checks if a specified value exists in an array

array array_keys() Returns all the keys of an array

array_values() Returns an array containing all the values of an array

array_rand(array, [no_of_elemen]) Returns one or more random keys from an array

array array_flip(array) Exchange all keys with their corresponding values

array array_marge(arr1, arr2,…) Marge one or more array into one array

ARRAY FUNCTIONS

Function Use

int array_push(array, v1, v2, …)
Insert one or more element to the end of an array

and returns the new number of elements

array_pop(array) Delete and return the last element of an array

array_shift(array)
Removes the first element from an array, and returns

the value of the removed element.

array_unshift(array, value1, value2,

value3, ...)
Inserts new elements at the beginning of an array.

array array_slice(array, start,

[length], [preserve])
Returns selected parts of an array.

array_splice(array, start, [length],

[array2])

Removes selected elements from an array and replaces

it with new elements. If length=0, the replaced array

will be inserted at the starting position.

DATE TIME

• The PHP date() function is used to format a date and/or a time.

date(string $format, ?int $timestamp = null): string

• format: is the general format which we want our output

• timestamp: Default value: time(). The optional timestamp
parameter is an integer Unix timestamp in seconds between the
current time and value as at 1st January, 1970 00:00:00
Greenwich Mean Time (GMT).

• Ex:
<?php
echo date("Y-m-d");
?>

DATE TIME

Parameter Meaning

r Returns the full date and time

d Returns the day of the month with leading zeroes [01 to 31]

D Returns the first 3 letters of the day name [Sun to Sat]

l(small L) Returns day name of the week [Sunday to Saturday]

m Returns the month number with leading zeroes [01 to 12]

M Returns the first 3 letters of the month name [Jan to Dec]

F Returns the month name [January to December]

y Returns two (2) digits year format (00 to 99)

Y Returns four digit year format

a, A Returns whether the current time is am or pm, AM or PM respectively

h, H Returns the hour with leading zeros [01 to 12],[00 to 23] respectively

i Returns the minutes with leading zeroes [00 to 59]

s Returns the seconds with leading zeroes [00 to 59]

DATE TIME

date_default_timezone_set('Asia/Kolkata'); Set time zone for India

echo date("r"); Fri, 03 Feb 2023 09:40:51 +0530

echo date("Y-m-d"); 2023-02-03

echo date("H:i:s"); 09:40:51

echo date("h-m-d A"); 09-02-03 AM

echo date("F j, Y, h:i a"); February 3, 2023, 09:40 am

Example:

STRING

• A string is series of characters, where a character is the same as a byte.

• As of PHP 7.0.0, there are no particular restrictions regarding the length
of a string on 64-bit builds.

• On 32-bit builds and in earlier versions, a string can be as large as up to
2GB (2147483647 bytes maximum)

• Single quoted String: The simplest way to specify a string is enclosed it in
single quotes (‘ ’). To specify a literal single quote, escape it with a
backslash.
Ex: $str= ‘String defined using single quote’

• Double quoted string: The double quotes are used to create relatively
complex strings compared to single quotes. Variable names can be used
inside double quotes and their values will be displayed.

• Ex:
$version=5;

echo “Current PHP version is: $version”;

STRING FUNCTIONS

Function Application

strlen($str) Returns the length of the string

str_word_count($str) Counts the number of words in the string

strrev($str) Reverse a string

strpos($str,$search_key) Search a specific text. If match found, it will

return the 1st matching index otherwise return

false.

str_replace($char,$replacing_char,$str) Replace some character with some other

character.

substr($string,$start,[$length]) Returns an extracted part of the string on

successful executing otherwise return false. Length

is optional. If start value is –ve, parsing will start

form the end

STRING FUNCTIONS

Function Application

ltrim($str,[$char]) Strip white space or newline character form left of

the string

rtrim($str,[$char]) Strip white space or newline character form right

of the string

trim($str,[$char]) Strip white space or newline character form both

left and right of the string

join($separator,$array) Returns string from the elements of an array.

implode($separator,$array) Same as join but binary safe

explode($separator,$str) Breaks a string into array based on the separator

value

str_split($str,[$length]) Breaks a string into array based on length variable.

If length is not specified, default value is 1.

STRING FUNCTIONS

Function Application

crypt($str,[$salt]) Return hashed string based on DES based

algorithm.

md5($str,[$raw]) Return the hashed string as 32 character

hexadecimal number. $raw is either true or false.

If true md5() will return 16 character binary

format.

strtoupper($str) Converts the string to upper case

strtolower($str) Converts the string to lower case

lcfirst($str) Converts the first character of a string to lower

case

ucfirst($str) Converts the first character of a string to upper

case

ucwords($str) Converts the first character of each word in a

string into upper case.

STRING FUNCTIONS

Function Application

str_repeat(string, no_of_repetation) Repeat the string for multiple times.

strcmp(str1, str2) Perform case sensitive comparison of two string.

Returns, < 0 if str1 is less than str2; > 0

if str1 is greater than str2, and 0 if they are

equal.

strcasecmp(str1, str2) Perform case in-sensitive comparison of two

string. Returns, < 0 if str1 is less than str2; >

0 if str1 is greater than str2, and 0 if they are

equal.

HTML FORM

HTML Form Tags

Tag Description

<form> It defines an HTML form to enter inputs by the

user side.

<input> It defines an input control.

<textarea> It defines a multi-line input control.

<label> It defines a label for an input element.

<select>. It defines a drop-down list

<option> It defines an option in a drop-down list.

<button> It defines a clickable button

HTML Input Tag Attributes

<input type=”text”> Defines a one line text input field

<input type=”radio”> Defines a radio button(For selecting one from

multiple options)

<input type=”checkbox”> Defines a checkbox(For selecting multiple options)

<input type=”submit”> Defines a submit button.(For submitting the form)

HTML FORM Attributes

Attribute Description

name Specifies a name used to identify the form.

action Specifies an address (url) where to submit the form (default: the

submitting page).

Ex: <form action="action_page.php">

method Specifies the HTTP method used when submitting the form (default:

GET).

Ex: <form action="action_page.php" method="get"> or

<form action="action_page.php" method="post">

target Specifies the target of the address in the action attribute (default:

_self).

enctype Specifies the encoding of the submitted data (default: is url-encoded).

GET vs POST

GET POST

Parameter are passed to the target page

by appending them with the URI.

Parameter are passed to the target page

by encoding them with the request object.

Parameters remain in browser history as

they are part of URI.

Parameters are not saved in browser

history.

As parameters are part of URL, they are

visible to the external user.

Parameters are never visible to the

external user.

As parameters are visible and are stored in

browser log, GET is less secure.

POST is secure than GET.

Performance is little bit faster than POST. Take a little bit more time than GET to

encapsulate the parameters with the

request object.

Capturing Form Data

• To access the value of a particular form field, you can use the

following super global variables.

$_GET - Contains a list of all the field names and values sent by a

form using the get method

$_POST - Contains a list of all the field names and values sent by a

form using the post method

$_REQUEST - Contains the values of both the $_GET and $_POST

variables

Capturing Form Data

HTML Form:

<form action="action.php" method="post">

<p>Your name: <input type="text" name="name" /></p>

<p>Your age: <input type="text" name="age" /></p>

<p><input type="submit" /></p>

</form>

action.php Page

<?php

$name = $_POST['name'];

$age = $_POST['age'];
echo "Hi $name, You are $age years old"

?>

PHP isset()

• The isset() function checks whether a variable is set, which means that
it has to be declared and is not NULL.

• This function returns true if the variable exists and is not NULL,
otherwise it returns false.

<?php

$a = 0;

if (isset($a)) {

echo "Variable 'a' is set";

}

$b = null;

if (isset($b)) {

echo "Variable 'b' is set.";

} else {

echo "Variable 'b' is not set.";

}

?>

O/P:

Variable 'a' is set

Variable 'b' is not set.

Fetching Data From Multivalued Field

• A multi-select list box or a group of check box allows user to select multiple
valus

• The trick is to add square brackets ([]) after the field name in HTML form
to fetch all the data to PHP page.

• When PHP engine sees a submitted form field name with square brackets at
the end, it creates a nested array of values within the $_GET or $_POST and
$_REQUEST super global array, rather than a single value.

<form action="action.php" method="post">

<p>

Language Known

<input type="checkbox" name="lang[]" value="English">English

<input type="checkbox" name="lang[]" value="Hindi">Hindi

<input type="checkbox" name="lang[]" value="Spanish">Spanish

</p>

<p><input type="submit" /></p>

</form>

<?php

$languages = $_POST['lang'];

foreach($languages as $l){

echo "$l ";

}

?>

Page Redirection

• In PHP, redirection is done by using header() function as it is

considered to be the fastest method to redirect traffic from one

web page to another.

• The main advantage of this method is that it can navigate from one

location to another without the user having to click on a link or

button.

<html>

<body>

<form action="controller.php" method="post">

Name: <input type="text" name="uname">

<input type="submit" name="submit">

</form>

</body>

</html>

<?php

if(isset($_POST['submit'])){

$name=$_POST['uname'];

if($name==""){

header("location:info.html");

}else{

header("location:thankyou.html");

}

}

PHP OOP

As object oriented programming is faster and easy to execute, PHP introduced object oriented

programing in PHP 5.

Class:

A class is defined by using the ‘class’ keyword, followed by the name of the class and a pair

of curly braces ({}).

Ex:

class Student{

 // Code to be executed

}

Object:

We can create multiple objects from a class. Each object has all the properties and methods

defined in the class, but they will have different property values. Objects of a class is created

using the new keyword.

Ex:

class Student{

 // Code to be executed

}

$std=new Student();

Data Member and Member Function:

Variable declaration is almost same as procedural PHP. But here with the variable name we

need to specify the access modifier.

In PHP 3 access modifiers available.

 public - the property or method can be accessed from everywhere. This is

default. Public data member can also be defined with ‘var’ keyword.

 protected - the property or method can be accessed within the class and by

classes derived from that class

 private - the property or method can ONLY be accessed within the class

Ex: private $var1; public $var2;

Function definitions look much like standalone PHP functions but are local to the class.

Functions will be used to set and access object data member.

Once the data and member function is declared they can be accessed by the following syntax.

obj_name -> data_member;

obj_name -> member_function();

In PHP, $this keyword references the current object of the class. The $this keyword allows you

to access the properties and methods of the current object within the class using the object

operator (->)

Ex 1:

<?php

class Fruit {

 public $name;

 protected $color;

 private $weight;

}

$mango = new Fruit();

$mango->name = 'Mango'; // OK

$mango->color = 'Yellow'; // ERROR

$mango->weight = '300'; // ERROR

?>

Ex 2:

class Student{

 private $name;

 private $roll;

 function set_name($name){

 $this->name = $name;

 }

 function set_roll($roll){

 $this->roll=$roll;

 }

function get_info(){

 return $this->name." ".$this->roll;

 }

}

$s = new Student();

$s->set_info("Will", 2);

echo $s->get_info();

Constructor:

A constructor allows you to initialize an object's properties upon creation of the object.

If you create a __construct() function, PHP will automatically call this function when you

create an object from a class.

Destructor:

A destructor is called when the object is destructed or the script is stopped or exited.

If you create a __destruct() function, PHP will automatically call this function at the end of

the script.

Note:

 constructor and destruct function starts with two underscores (__)

 Before PHP 5 Constructor have the same name as class name

 __construct and __destruct is called magic methods

Ex:

<?php

 class Student{

 private $name, $roll;

 function __construct($name, $roll){

 $this->name = $name;

 $this->roll = $roll;

 echo "Student Object is Created";

 }

 function __destruct()

 {

 echo "
Obj Destroyed";

 }

 }

 $s = new Student("Jhon", 1);

 unset($s);

 var_dump($s);

?>

The static Keyword:

The static keyword is used to declare properties and methods of a class as static. Static

properties and methods can be used without creating an instance of the class.

These data member and member functions can also be accessed statically within an instantiated

class object.

A class can have both static and non-static methods. A static method can be accessed from a

method in the same class using the self keyword and double colon (::)

Ex:

<?php

class Employee{

 public static $eid;

 public static $name;

 static function get_info(){

 echo self::$name." ".self::$eid;

 }

}

Employee::$name = "James";

Employee::$eid = 101;

Employee::get_info();

?>

Inheritance:

Inheritance is a mechanism of extending an existing class by inheriting a class. We create a

new class with all functionality of that existing class, and we can add new members to the new

class.

When we inherit one class from another we say that inherited class is a subclass and the class

who has inherit is called parent class.

We declare a new class with additional keyword extends.

Ex: class B extends A

PHP classes supports Single, Multilevel and Hierarchical inheritance but does not support

Multiple inheritance. Multiple inheritance can be achieved by using interfaces.

Single Inheritance Example:

<?php

 class Student{

 protected $roll;

 protected $name;

 function set_roll_name($r, $n){

 $this->name = $n;

 $this->roll = $r;

 }

 }

 class MCA extends Student{

 protected $branch;

 function __construct($roll, $name){

 $this->set_roll_name($roll, $name);

 $this->branch = "MCA";

 }

 function display(){

 echo $this->name." ".$this->roll." ".$this->branch;

 }

 }

 $s1 = new MCA(1, "Lily");

 $s1->display();

?>

How to Call the Parent Constructor?

If the child class does not have its own constructor, then the base class constructor will

automatically be called. But if both the child and parent class have constructors, the constructor

of the child class doesn’t automatically call the constructor of its parent class. Use

parent::__construct(arguments) to call the parent constructor from the constructor in the child

class.

<?php

 class Student{

 protected $roll;

 protected $name;

 function __construct($r, $n){

 $this->name = $n;

 $this->roll = $r;

 }

 }

 class MCA extends Student{

 protected $branch;

 function __construct($roll, $name){

 $this->branch = "MCA";

 parent::__construct($roll, $name);

 }

 function display(){

 echo $this->name." ".$this->roll." ".$this->branch;

 }

 }

 $s1 = new MCA(1, "Lily");

 $s1->display();

?>

Multilevel Inheritance Example:

 <?php

 class Student{

 protected $name;

 protected $roll;

 function __construct($n, $r){

 $this->name = $n;

 $this->roll = $r;

 }

 }

 class MCA extends Student{

 protected $branch;

 function __construct(){

 $this->branch = "MCA";

 }

 }

 Class FirstMCA extends MCA{

 protected $year;

 function __construct($n, $r){

 $this->year= "1st";

 parent::__construct();

 Student::__construct($n, $r);

 }

 function get_info(){

 echo $this->name." ".$this->roll." ".$this->branch." ".$this->year;

 }

 }

 $sam = new FirstMCA("Sam", 1);

 $sam->get_info();

?>

Abstract Class and Methods:

An abstract class is a class that contains at least one abstract method. An abstract method is a

method that is declared, but not implemented in the code. An abstract class or method is defined

with the abstract keyword. An abstract class can have properties and methods as a regular class.

But it cannot be instantiated.

In most cases, an abstract class will contain at least one abstract method though it is not

required. If a class contains one or more abstract methods, it must be an abstract class. If a class

extends an abstract class, it must implement all abstract methods or itself be declared abstract.

Ex: Abstract class and Hierarchical Inheritance

<?php

 abstract class Human{

 protected $name;

 function set_name($n){

 $this->name = $n;

 }

 abstract function get_info();

 }

 class Male extends Human{

 protected $gender;

 function __construct(){

 $this->gender = "Male";

 }

 function get_info(){

 echo $this->name." ".$this->gender;

 }

 }

 class Female extends Human{

 protected $gender;

 function __construct()

 {

 $this->gender = "Female";

 }

 function get_info(){

 echo $this->name." ".$this->gender;

 }

 }

 $jhon = new Male();

 $jhon->set_name("Jhon");

 $jhon->get_info();

 $jane = new Female();

 $jane->set_name("Jane");

 $jane->get_info();

?>

Interface:

An interface is similar to a class except that it cannot contain code. An interface can define

method names and arguments, but not the contents of the methods. Any classes implementing

an interface must implement all methods defined by the interface. A class can implement

multiple interfaces. An interface is declared using the "interface" keyword. An interface

consists of methods that contain no implementation. In other words, all methods of the interface

are abstract methods. An interface can also include constants.

Ex: Interface and Multiple Inheritance

<?php

 interface Calcualtor{

 function add();

 function sub();

 }

 interface TestInterface{

 }

 class TestClass{

 function test_func(){

 echo "Test Function is called";

 }

 }

 class TestCalc extends TestClass implements Calcualtor, TestInterface {

 protected $x;

 protected $y;

 function __construct($x, $y)

 {

 $this->x = $x;

 $this->y = $y;

 }

 function add(){

 return $this->x + $this->y;

 }

 function sub(){

 return $this->x - $this->y;

 }

 }

 $c = new TestCalc(10, 5);

 echo $c->add();

 echo "
";

 echo $c->sub();

 echo "
";

 $c->test_func();

?>

Abstract Class vs Interface:

 Abstract class can have abstract methods and non-abstract methods, but interface can

only have abstract mentors,

 Interfaces cannot have properties, while abstract classes can

 All interface methods must be public, while abstract class methods is public or

protected

 All methods in an interface are abstract, so they cannot be implemented in code and the

abstract keyword is not necessary.

 A class inherits from an abstract class by using extends keyword, but inherits from

interface using implements keyword.

 Interface supports multiple inheritance, but abstract does not.

Exception

An error is an unexpected program result that cannot be handled by the program itself. An

exception is unexpected program result that can be handled by the program itself. Examples of

exception include trying to open a file that does not exist. This exception can be handled by

either creating the file or presenting the user with an option of searching for the file.

Why handle exception?

 Avoid unexpected results on our pages which can be very annoying or irritating to our

end users

 Improve the security of our applications by not exposing information which malicious

users may use to attack our applications

 PHP Exceptions are used to change the normal flow of a program if any predictable

error occurs.

Exception handling is almost similar in all programming languages. It changes the normal flow

of the program when a specified error condition occurs, and this condition is known as

exception. PHP offers the following keywords for this purpose:

try -The try block contains the code that may have an exception or where an exception can

arise. When an exception occurs inside the try block during runtime of code, it is caught and

resolved in catch block. The try block must be followed by catch or finally block. A try block

can be followed by minimum one and maximum any number of catch blocks.

catch -The catch block contains the code that executes when a specified exception is thrown.

It is always used with a try block, not alone. When an exception occurs, PHP finds the matching

catch block.

throw - It is a keyword used to throw an exception. It also helps to list all the exceptions that

a function throws but does not handle itself.

finally - The finally block contains a code, which is used for clean-up activity in PHP.

Basically, it executes the essential code of the program.

Example:

<?php

function div($a, $b){

 try{

 if($b==0){

 throw new Exception("Divisor Can not be zero");

 }

 } catch(Exception $e){

 echo $e;

 return "";

 } finally {

 echo "Finally Called";

 }

 return $a/$b;

}

$a = 10;

$b = 0;

echo div($a,$b);

?>

Creating a Custom Exception Class

To create a custom exception handler you must create a special class with functions that can

be called when an exception occurs in PHP. The class must be an extension of the exception

class.

The custom exception class inherits the properties from PHP's exception class and you can add

custom functions to it.

Example:

<?php

class CustomException extends Exception{

 function getError(){

 echo $this->getMessage()." at line number ".$this->getLine();

 }

}

$a=3;

$b=0;

try{

 if($b==0){

 throw new CustomException("Divisor Can not be zero");

 }

 if($b==1){

 throw new Exception("Divisor Can not be 1");

 }

} catch(CustomException $ce){

 echo $ce->getError();

} catch(Exception $e){

 echo $e;

}

?>

Example 2:

<?php

class OddNumberException extends Exception{

 function getMyMessage(){

 echo "This is an Odd number";

 }

}

try{

 $num = 41;

 if($num%2==0){

 echo "This is an even number";

 } else {

 throw new OddNumberException("Odd Number");

 }

} catch(OddNumberException $oe){

 $oe->getMyMessage();

}

?>

PHP
SESSION AND COOKIE

What is Session Tracking ?

 HTTP is a stateless and volatile
protocol

 When there is a need to maintain the
conversational state, session tracking
is needed.

 Session tracking is a mechanism that
servers use to maintain state about a
series of requests from the same
user (that is, requests originating
from the same browser) across some
period of time.

Fig: Three Tire Web Architecture

Client Server Database

Server

HTTP
Database

API

 A cookie is a small text segment that the web server stores on the
client computer.

 Usually cookies are stored in browser’s catch memory

 When the same browser sends any request to the same server then it
sends those cookie information to the server and server uses that
information to identify the user.

COOKIE:

• A cookie in PHP can be created by using setcookie() function.

setcookie(name, value,[expire, path, domain, secure])

• Name: The name of the cookie, used as cookie variable name.

• Value: Sets the value of the named variable. The value must be a string type data.

• Expire: Specify a future time in seconds since 00:00:00 GMT on 1st Jan, 1970. After this
time cookie will become inaccessible. If the parameter is not set, then cookie will
automatically expire when the web browser is closed.

• Path: The path on the server in which the cookie will be available on.

• Domain: The domain for which the cookie is available.

• Secure: Indicates that the cookie should only be transmitted over a secure HTTPs
connection. When set to 1, cookie will be sent over HTTPs otherwise set to 0, means
cookie can be sent by regular HTTP.

• Ex: setcookie("branch", "MCA", time()+120);

Create Cookie with PHP:

• Persistence Cookie
• Cookie with expire time

• Stays on clients computer even after closing the browser

• setcookie("branch","MCA",time()+120);

• Non-Persistence Cookie
• Cookie without expire time

• Automatically removed from the client’s computer when browser is closed

• Ex: setcookie("branch","MCA“);

• time():built-in function in PHP which returns the current time measured
in the number of seconds since 00:00:00 GMT on 1st Jan, 1970.

Types of Cookie:

 Once the cookie is set, they can only be accessed on the next page load. PHP cookies can be
accessed by either using the super global variable $_COOKIE[“cookie_name”] or by using
$HTTP_COOKIE_VARS variable.

Ex:

<?php

setcookie("branch","MCA",time()+120);

echo "Cookie value is: ".$_COOKIE["branch"];

?>

Output:

On First load:

Notice: Undefined index: branch in C:\xampp\htdocs\testproject\cookie1.php on line 8

On 2nd Load onwards:

Cookie value is: MCA

Retrieve a Cookie with PHP:

To overcome the error on first load, we can rewrite the code in the following
way–
Ex:
<?php
setcookie("branch","MCA",time()+120);

if(isset($_COOKIE["branch"])){
echo "Cookie value is: ".$_COOKIE["branch"];

}else{
echo "No Cookie Value is set";

}
?>

Output:
On First load:

No Cookie Value is set

On 2nd Load onwards:
Cookie value is: MCA

Modify Cookie:
• we can use the same setcookie() function with the same name and the

modified values.

Ex:

<?php

setcookie("branch","MBA",time()+(365*86400));

if(isset($_COOKIE["branch"])){

echo "Cookie value is: ".$_COOKIE["branch"];

}else{

echo "No Cookie Value is set";

}

?>

Output:

Cookie value is: MBA

Delete Cookie:
• To destroy a cookie before its expiry time, we need to set the expiry

time to a time that has already passed.

Ex:

<?php

setcookie("branch","MBA",time()-3600);

?>

Ex: Last visit date time
<?php

date_default_timezone_set("Asia/kolkata");

if(!isset($_COOKIE['last_visit'])){

echo "Welcome to our Website";

}else{

echo "Welcome back to our page";

echo "
You have last visited us on:
".$_COOKIE['last_visit'];

}

setcookie('last_visit',date('d-m-Y h:i:s
a'),time()+360*86400);

?>

O/P:
On 1st load:
Welcome to our Website

On 2nd load onwards:
Welcome back to our page
You have last visited us on:
09-02-2020 07:33:15 am

Disadvantages of Cookie:
• Clients can disable cookies on their browsers.

• cookie can contain a very limited amount of information (not more
than 4 kb).

• Most browsers restrict the number of cookies that can be set by a
single domain to not more than 20 cookies.

• Less secure

SESSION:

• Session is a global variable, stored at server, which help us to access
data across the various pages of an entire website.

• A session creates a file in a temporary directory on the server.

• When a session is started following things happen −

• PHP first creates a unique identifier for that particular session which is a
random string of 32 hexadecimal numbers.

• A cookie called PHPSESSID is automatically sent to the user's computer to
store unique session identification string.

• A file is automatically created on the server in the designated temporary
directory and bears the name of the unique identifier prefixed by sess_ i.e,
sess_3c7foj34c3jj973hjkop2fc937e3443.

Create Session:

• A PHP session is easily started by making a call to
the session_start() function. This function first checks if a session is
already started and if none is started then it starts one.

• Session variables are stored in associative array called $_SESSION[].

• Syntax: $_SESSION[‘variable_name’] = ’value’;

Ex:

<?php

session_start();

$_SESSION['user_name']='Ram Kumar';

echo $_SESSION['user_name'];

?>

O/P:
Ram Kumar

Ex: Sharing session in multiple pages
session_first.php

<?php

session_start();

$_SESSION['name']="Ram Kumar";

?>

Next

session_second.php

<?php

session_start();

$_SESSION['roll']=123456;

?>

Next

session_third.php

<?php

session_start();

echo "Name: ".$_SESSION['name'];

echo "
Roll: ".$_SESSION['roll'];

?>

Destroying Session:

• session_destroy() - a single call can destroy all the session variables

• unset(‘session_name’) - to unset a particular session variable.

Ex:

<?php

session_start();

unset($_SESSION[‘name’]); //Delete a single session variable

session_destroy(); //Destroy the session(Delete all session variables)

?>

Ex: Page Visit Count Using Session
<?php

session_start();

if(isset($_SESSION['count'])){

$c=$_SESSION['count'];

$c++;

$_SESSION['count']=$c;

}else{

$_SESSION['count']=1;

}

echo "Number of visit: ".$_SESSION['count'] ;

?>

O/P:
Number of visit: 5

Difference between Cookie & Session:

Cookie Session

Cookies are stored as a text file at the

client side.

Sessions are stored at the server side.

Cookie is limited by the size and can only

store 4KB of data.

Session can store unlimited amount of

data.

Storing Multiple value is difficult Storing multiple value by using session

become easier.

As cookie stored at the client side, cookie

is less secure.

As session stored at the server end,

session is more secure than cookie.

FILE HANDLING WITH PHP

OPENING A FILE

• Since PHP is a server side
programming language, it
allows to create, access, and
manipulate files and directories
on the web server using the
PHP file system functions

• The PHP fopen() function is
used to open a file.

• resource fopen (string $fname
, string $mode)

Modes Description

r Open a file for read only.

w
Open a file for write only. Erases the
contents of the file or creates a new
file if it doesn't exist.

a

Open a file for write only. The existing
data in file is preserved. File pointer
starts at the end of the file. Creates a
new file if the file doesn't exist

x
Creates a new file for write only.
Returns FALSE and an error if file
already exists

r+, w+,
a+, x+

Open a file for read/write.

USEFUL FUNCTIONS

Functions Description

filesize(filename) Returns the size of a file.

boolean file_exists(path) checks whether a file or directory exists.

string fread(resource, length)
Used to read data of the file. the second parameter specifies the
maximum number of bytes to read.

string fgets(resource) Used to read single line from the file.

string fgetc(resource) Used to read single character from the file.

int readfile(file_name)

Reads a file and writes it into the output buffer. Returns the
number of bytes read from the file on success or false on failure.
This function is useful if all you want do to is open up a file and
read it’s contain.

int fwrite(resource, string)
Writes the contents of string to the file system pointed by the
resource. Returns the number of bytes written or false on error.

USEFUL FUNCTIONS

Functions Description

boolean fclose(
resource $handle)

The file pointed to by handle is closed. Returns true on success
or false on failure.

copy(source_file,
destination_file)

Used to copy file. Returns true on success or false on failure.

unlink(file_name)
The unlink function is used to delete the file. Returns true on
success or false on failure.

rename(old_name,
new_name)

Rename a file with a new name. Returns true on success or false
on failure.

mkdir(path)
Attempts to create a directory with the name provided with the
path. Returns true on success or false on failure.

rmdis(directory_name)
Attempts to remove the directory with the given name. Returns
true on success or false on failure.

EXAMPLES

Writing into file Reading from the file Append Data to the file

$fp=fopen("info.txt",'w');
$str="Hello User !! Welcome to
the world of PHP.";
fwrite($fp,$str);
fclose($fp);

$fp=fopen("info.txt",'r');
$content =
fread($fp,filesize("info.txt"));
echo $content;
fclose($fp);

$fp=fopen("info.txt",'a');
$str="In this course you will
learn PHP";
fwrite($fp,$str);
readfile("info.txt");
fclose($fp);

Copy a file Delete a file Create Directory

if(copy("info.txt","php.txt")){
echo "File Copied

Successfully";
}else{

echo "File not copied.
Something wrong";
}

if(unlink("php.txt"))
echo "File deleted";

else
echo "Error while deleting

the file";

if(mkdir("Temp"))
echo "Directory created";

else
echo "Error while creating

the directory";

PHP INCLUDE

• PHP include helps us to take all the text/code/markup that exists in the
specified file and copies it into the file that uses the include statement.

• Including files is very useful when you want to include the same PHP,
HTML, or text on multiple pages of a website.

• PHP supports two ways for content inclusion-

• include() - upon failure produce a warning (E_WARNING) and the
script will continue

• require() - upon failure produce a fatal error (E_COMPILE_ERROR) and stop the
script

• Syntax - include 'filename'; OR require 'filename';

PHP INCLUDE

• The include_once() function can be used to include a PHP file in another
one, when you may need to include the called file more than once. If it
is found that the file has already been included, calling script is going to
ignore further inclusions.

• require_once() function can be used to include a PHP file in another
one, when you may need to include the called file more than once. If it
is found that the file has already been included, calling script is going to
ignore further inclusions.

PHP FILE UPLOAD

• File upload in PHP allows you to upload files with different extensions to
the server.

• We can use HTML forms and enable the users to upload files to the
server.

• These files are stored in a temporary directory unless moved to a target
location for permanent storage.

• Some important checks before uploading a file –

• The form need to have method attribute set to post and enctype attribute
is set to multipart/form-data

• In your "php.ini" file, search for the file_uploads directive, and set it to On

PHP FILE UPLOAD

• The PHP global $_FILES contains all the information of file. By the help of $_FILES
global, we can get file name, file type, file size, temp file name and errors associated
with file.

• $_FILES[‘filename’][‘name]: returns file name.

• $_FILES[‘filename’][‘type’]: returns MIME type of the file.

• $_FILES[‘filename’][‘size’]: returns the size of the file in bytes.

• $_FILES[‘filename’][‘tmp_name’]: returns temporary file name of the file which was stored on the
server.

• $_FILES[‘filename’][‘error’]: returns error code associated with the file.

• boolean move_uploaded_file(filename, destination): moves the uploaded file to a
new location. The move_uploaded_file() function checks internally if the file is
uploaded thorough the POST request. It moves the file if it is uploaded through the
POST request.

PHP FILE UPLOAD EXAMPLE

HTML Form:

<html>

<body>

<form action="file_upload.php"
method="post"
enctype="multipart/form-data">

<input type="file" name="my_file">

<input type="submit"
name="submit" value="Upload File">

</form>

</body>

</html>

PHP Code
<?php
if(isset($_POST['submit'])){

$file=$_FILES['my_file'];
$file_name=$file['name'];
$path="Images/".$file_name;
echo "File Name: ".$file_name;
echo "
File Type: ".$file['type'];
echo "
File Size: ".$file['size'];
echo "
Temporary file name: ".$file['tmp_name'];
echo "
";
if(move_uploaded_file($file['tmp_name'],$path)){

echo "File uploaded successfully";
} else { echo "Error Code: ".$file['error']; }

}
?>

PHP FILE DOWNLOAD

• The readfile() function reads a file and writes it to the output buffer and helps us to
perform the download operation.

• Ex:

<?php
$file = 'monkey.gif';

if (file_exists($file)) {
header('Content-Description: File Transfer'); // Optional
header('Content-Type: application/octet-stream');
header('Content-Disposition: attachment; filename="'.basename($file).'"');
header('Content-Length: ' . filesize($file)); // Optional
readfile($file);
exit;

}
?>

PHP HEADER FUNCTION

• An HTTP header is a field of an HTTP request or response that passes additional
context and metadata about the request or response.

• The header() function is an predefined PHP native function. With header() HTTP
functions we can control data sent to the client or browser by the Web server
before some other output has been sent.

• Some of the important uses of the header() in PHP are listed below:

• Redirect page: It is used to redirect a from one web page to another web page in PHP.

• Ex: header('Location:give your url here');

• Set Content-Type: We can change the content type using header()

• Ex: header("Content-type:application/pdf");

• Cache-control: HTTP headers to prevent page caching

• header("Cache-Control: no-cache");

THANK YOU!

MySQL

14-03-2023 09:32 AM 2

Introduction

 MySQL is an open-source relational database management system

(RDBMS).

 MySQL is written in C and C++.

 MySQL was created by a Swedish company, MySQL AB and was

first released in 1995

 Sun Microsystems acquired MySQL AB in 2008.

 On April 20, 2009, it was announced that Oracle Corporation

would acquire Sun

 MySQL is free and open-source software under the terms of the

GNU General Public License, and is also available under a variety of

proprietary licenses.

14-03-2023 09:32 AM 3

Use MySQL in XAMPP

 Locate XAMPP installation directory and go inside mysql/bin

folder.

 Open command prompt at the location

 Type mysql –u username -p and hit enter

 In common cases username is root

 Type the password at the prompt if no password for the

database just hit enter

 You are ready to use MySQL / MariaDB

14-03-2023 09:32 AM 4

Get Started with MySQL

 Display available databases by using show databases;

 Either use one of the existing databases or you can create your own

database.

 To create your own database use - create database database_name;

 Ex: create database sit_mca;

 To select any database use – use <database_name>;

 Ex: use sit_mca;

 To display the available tables in the database use – show tables;

14-03-2023 09:32 AM 5

SQL Commands

14-03-2023 09:32 AM 6

MySQL Data Types

String Number Date Time

char

varchar

text

blob

binary

int

bigint

float

double

boolean

date

datetime

timestamp

time

year

14-03-2023 09:32 AM 7

Common Queries

 Create table: CREATE TABLE table_name (

column1 datatype, column2 datatype, column3 datatype, );

 Insert Data: INSERT INTO table_name (column1, column2, column3, ...) VALUES

(value1, value2, value3, ...);

 Display data: SELECT column1, column2, ... FROM table_name;

 Update Record: UPDATE table_name SET column1 = value1, column2 = value2,

... WHERE condition;

 Delete Record: DELETE FROM table_name WHERE condition;

PHP + MySQL

• PHP can work with a MySQL database using –
MySQL

MySQLi Procedural (‘i’ in MYSQLI stands for improved.)

MySQLi Object Oriented

PDO (PHP Data Objects)

• Earlier version of PHP used the MySQL extension. However this
extension was deprecated in 2012. PDO was introduced in PHP 5.1. In
PHP 5 and later versions developer can go with MySQLi or PDO.

PHP with MySQL:

MySQLi Functions Description

mysqli_connect(host, username, password,

[dbname, port, socket])

Opens a new connection to the MySQL server.

mysqli_select_db(connection, name)
mysqli_select_db() function is used to change the default database

for the connection.

mysqli_error(connection)
returns the last error description for the most recent function call, if

any.

mysqli_close(connection) closes a previously opened database connection.

mysqli_query(connection, query)

mysqli_query() function performs a query against a database. For

successful SELECT, SHOW, DESCRIBE, or EXPLAIN queries it will

return a mysqli_result object. For other successful queries it will

return TRUE. FALSE on failure

mysqli_num_rows(mysqli_result) Returns an integer representing the number of rows in result set.

mysqli_fetch_all(result, [resulttype])

mysqli_fetch_all() function fetches all result rows and returns the

result-set as an associative array, a numeric array, or both.

resulttype can be MYSQLI_ASSOC

MYSQLI_NUM (this is default)

MYSQLI_BOTH

mysqli_fetch_assoc(result)
Returns an associative array of strings representing the fetched row.

NULL if there are no more rows in result-set

Connect to MySQL Database using MySQLi procedure:

<?php
$con=mysqli_connect("localhost","root","12345","mydatabase");
if($con){

echo "Connected";
}else{

echo "Error: ".mysqli_error($con);
}
?>

PHP with MySQL:

CRUD Operation with PHP and MySQL

1. Connect to MySQL prompt.

2. Create Database by using
create database studentinformationsystem;

3. Create the database table:
create table student(roll int(5) primary key,name varchar(20),mobile bigint(10),
address varchar(20), branch varchar(5));

Create Require Database & Table:

registration.php (.html)

<html>

<head>

<title>Student Information System</title>

</head>

<body>

<center>

<h1>Add Student</h1>

</center>

<form action="insert.php" method="post">

<table align="center">

<tr><td>Roll No:</td>

<td><input type="text" name="roll"></td></tr>

<tr><td>Name:</td>

<td><input type="text" name="name"></td></tr>

HTML form to add student:
<tr><td>Mobile:</td><td><input type="text" name="mobile"></td> </tr>
<tr> <td>Address:</td>
<td><textarea rows="5" cols="20" name="address"></textarea></td></tr>
<tr><td>Branch</td>

<td><select name="branch">
<option value="">--SELECT--</option>
<option value="BCA">BCA</option>
<option value="BBA">BBA</option>
<option value="MCA">MCA</option>
<option value="MBA">MBA</option>
</select>

</td>
</tr>
<tr><td colspan="2" align="right">
<input type="submit" value="ADD" name="submit">
</td></tr>

</table>
</form>
</body>
</html>

insert.php
<?php
if(isset($_POST['submit'])){

$roll=$_POST['roll'];
$name=$_POST['name'];
$mobile=$_POST['mobile'];
$address=$_POST['address'];
$branch=$_POST['branch'];
$con=mysqli_connect("localhost","root","12345","studentinformationsystem") or die(mysqli_error($con));

$qry="insert into student values($roll,'$name',$mobile,'$address','$branch')";
if(mysqli_query($con,$qry)){

echo "One Student Added";
}else{

echo "Error while inserting:".mysqli_error($con);
}
mysqli_close($con);

}
?>

Back

Insert Operation:

display.php
<?php
$con=mysqli_connect("localhost","root","12345","studentinformationsystem") or die(mysqli_error($con));
$qry="select * from student";
$result=mysqli_query($con,$qry);
if(mysqli_num_rows($result)>0){

echo "<table border='1' align='center' cellpadding='3'>";
echo "<caption>Available Student Records</caption>";
echo

"<tr><th>Roll</th><th>Name</th><th>Mobile</th><th>Address</th><th>Branch</th><th>Action</th></tr>";
while($student=mysqli_fetch_assoc($result)){

echo "<tr><td>$student[roll]</td>
<td>$student[name]</td>
<td>$student[mobile]</td>
<td>$student[address]</td>
<td>$student[branch]</td>
<td>

Update
Delete

</td> </tr>";
}
echo "</table>";

} ?>

update.php
<html>
<body>
<form action="" method="post">
<table align="center">
<caption>Update Contact Information</caption>
<tr><td>Roll:</td>

<td><?php
if(isset($_GET['roll']))

echo $_GET['roll'];
?> </td></tr>

<tr> <td>Mobile:</td>
<td><input type="text" name="mobile"></td></tr>

<tr> <td>Address:</td>
<td><textarea rows="5" cols="20"

name="address"></textarea></td></tr>
<tr><td colspan="2"> Back

<input type="submit" name="update"
value="Update">
</td></tr>
</table>
</form>
</body>
<html>

<?php
if(isset($_GET['roll']))

$roll=$_GET['roll'];
if(isset($_POST['update'])){

$con=mysqli_connect("localhost","root","12345
","studentinformationsystem") or die(mysqli_error($con));

$mobile=$_POST['mobile'];
$address=$_POST['address'];
$qry="update student set

mobile=$mobile,address='$address' where roll=$roll";
mysqli_query($con,$qry);
if(mysqli_affected_rows($con)>0){

echo "Student Info Updated";
}else{

echo "Error ".mysqli_error($con);
}
mysqli_close($con);

}
?>

Student Info Updated

delete.php
<?php
$con=mysqli_connect("localhost","root","12345","studentinformationsystem") or die(mysqli_error($con));
$roll=$_GET['roll'];
$qry="delete from student where roll=$roll";
if(mysqli_query($con,$qry)){

header("location:display.php");
}else{

echo "Error";
}
?>

Module 5

Design Pattern

• In software engineering, a Design Pattern is a general repeatable solution
to commonly occurring problem in software Design.

• Good Object-oriented designs should be reusable,
maintainable and extensible

• Some of the most significant benefits of implementing design patterns in
PHP are:
• PHP Design patterns help solve repetitive problems faced during development
• Using design patterns in PHP makes communication between designers and

developers more efficient
• You can be confident that other developers will understand your code since it follows

design patterns
• Following best practices helps build more robust applications
• It helps make development faster and easier

MVC Design Pattern

• MVC stands for Model, View & Controller. It is a software design
pattern that divides the application into the interconnection of three
main components.

• PHP MVC is an application design pattern that separates the
application data and business logic (model) from the presentation
(view).

• The main advantage of Architecture is Reusability, Security and
Increasing the performance of Application.

MVC Design Pattern

• Model – this part is concerned with the
business logic and the application data.
It can be used to perform data
validations, process data and store it.

• Views – this part deals with presenting
the data to the user. View is responsible
for sending requests to the controller
and receives a response from it. It is a
place where all the templates are stored
which contains HTML, CSS, and JS files.

• Controller - The controller acts as an interface between view and model. Its
responsibility(mostly) is to get the request from view and send it to model to perform
a necessary operation. This means it separates user interface from business logic and
handles how the application will respond to user interaction in the view.

MVC Design Pattern : Advantages

The MVC design pattern offers advantages in terms of code organization,
maintainability, testability, extensibility, and collaboration, making it a widely
used pattern in software development.

• Separation of concerns: MVC promotes a clear separation of concerns
between the model, view, and controller components. This separation
allows developers to focus on specific aspects of the application without
tightly coupling them together. It improves code organization and
maintainability.

• Modularity and reusability: With the separation of concerns, each
component of MVC can be developed and tested independently. This
modularity enhances code reusability since the components can be used in
different contexts or combined with other components to build new
features or applications.

MVC Design Pattern: Advantages

• Code maintainability: By separating the application logic from the user
interface, MVC makes it easier to maintain and update the code. Changes
in one component, such as the view or the model, can be made without
affecting the other components as long as the interfaces are preserved.

• Testability: The separation of concerns in MVC facilitates unit testing. The
model, view, and controller can be tested individually with different test
cases, ensuring that each component functions correctly. This promotes
better test coverage and more robust software.

• Flexibility and extensibility: MVC allows for flexibility in evolving and
extending the application. New views can be added to present the same
data in different ways, and new controllers can be introduced to handle
additional user interactions or business logic. The modularity of MVC
makes it easier to introduce changes and adapt to evolving requirements.

MVC Design Pattern: Advantages

• Collaboration: The separation of responsibilities in MVC enables
collaboration among developers working on different components.
Multiple developers can work on the model, view, and controller
simultaneously without interfering with each other's work. This
promotes parallel development and faster iterations.

• User interface consistency: MVC helps maintain consistency in the
user interface. Since the view component is responsible for rendering
the user interface, any changes or updates to the UI can be easily
applied across the application by modifying the view component.

Web Service

• A web service (WS) is server running on a computer device, listening
for requests at a particular port over a network, serving web
documents (HTTP, JSON, XML, images).

• Web Services do not use the World Wide Web (WWW), a human user
interface running on the Internet, but rather a machine-to-machine
service running on the Internet using the WWW protocols.

• The method of communication between two devices over the
network.

• It is a collection of standards or protocols for exchanging information
between two devices or application.

Web Service

Web Service Characteristics

• Interchangeable Data Representation: Web services use XML / JSON at
data representation and data transportation layers. Using XML / JSON
eliminates any networking, operating system, or platform binding. Web
services based applications are highly interoperable at their core level.

• Loosely Coupled: Loosely coupled means that the client and the web
service are not bound to each other, which means that even if the web
service changes over time, it should not change the way the client calls the
web service.

• Supports Remote Procedure Calls(RPCs): Web services allow clients to
invoke procedures, functions, and methods on remote objects. Remote
procedures expose input and output parameters that a web service must
support.

Web Service Characteristics

• Synchronous or Asynchronous functionality –In synchronous
operations, the client will actually wait for the web service to
complete an operation. Asynchronous operations allow a client to
invoke a service and then execute other functions in parallel.

• Supports Document Exchange – One of the key benefits of XML is its
generic way of representing not only data but also complex
documents. These documents can be as simple as representing a
current address, or they can be as complex as representing an entire
book.

Web Service Architecture

• Service Provider: This is the provider of the
web service. The service provider
implements the service and makes it
available on the Internet.

• Service Requestor: This is any consumer of
the web service. The requestor utilizes an
existing web service by opening a network
connection and sending an XML request.

• Service Registry: This is a logically
centralized directory of services. The
registry provides a central place where
developers can publish new services or find
existing ones. It therefore serves as a
centralized clearing house for companies
and their services.

Web Service Architecture

• Service Transport Layer: This layer is responsible for transporting messages
between applications. Currently, this layer includes Hyper Text Transport
Protocol (HTTP), Simple Mail Transfer Protocol (SMTP), File Transfer
Protocol (FTP), and newer protocols such as Blocks Extensible Exchange
Protocol (BEEP).

• Messaging Layer: This layer is responsible for encoding messages in a
common XML/JSON format so that messages can be understood at either
end.

• Service Description: This layer is responsible for describing the public
interface to a specific web service. Currently, service description is handled
via the Web Service Description Language (WSDL).

• Service Discovery Layer: This layer is responsible for centralizing services
into a common registry and providing easy publish/find functionality.

Web Service Types

• There are mainly two types of web services.
1. SOAP web services.

2. RESTful web services.

SOAP Web Service

• SOAP is an XML-based protocol for accessing web services over HTTP.

• It has some specification which could be used across all applications.

• It is platform independent and language independent. By using SOAP, you
will be able to interact with other programming language applications.

• At first, the SOAP client creates a service request, and it is sent to the
‘SOAP request handler’ of a web server through HTTP or HTTPS transport
protocols. Now, the web server receives the request and then processes it
to the web service provider.

• The service provider responds to the 'SOAP request handler' in terms of
requested parameters or data or return values. Eventually, the response is
sent to the service requestor. Note that XML format is used for sending a
request and receiving a response in SOAP protocol.

SOAP Message Format

• The SOAP specification defines something known as a “SOAP
message” which is what is sent to the web service and the client
application.

• An Envelope element that identifies the XML document as a SOAP
message – This is the containing part of the SOAP message and is
used to encapsulate all the details in the SOAP message. This is the
root element in the SOAP message.

• A Header element that contains header information – The header
element can contain information such as authentication
credentials which can be used by the calling application

• A Body element that contains call and response information – This
element is what contains the actual data which needs to be sent
between the web service and the calling application.

• Fault: It is the sub-element and the child element of the SOAP
body. It is used to report errors and error status information.

SOAP Message Format
SOAP Request

POST /InStock HTTP/1.1
Host: www.example.org
Content-Type: application/soap+xml;
charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/s
oap-envelope/"
soap:encodingStyle="http://www.w3.org/20
03/05/soap-encoding">

<soap:Body xmlns:m="http://www.example.
org/stock">

<m:GetStockPrice>
<m:StockName>IBM</m:StockName>

</m:GetStockPrice>
</soap:Body>

</soap:Envelope>

SOAP Response
HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn
<?xml version="1.0"?>

<soap:Envelope
xmlns:soap="http://www.w3.org/2003/05/soap-envelope/"
soap:encodingStyle="http://www.w3.org/2003/05/soap-encoding">
<SOAP-ENV:Fault>

<faultcode xsi:type="xsd:string">SOAP-ENV:Client</faultcode>
<faultstring xsi:type="xsd:string">

Failed to locate method (GetTutorialID) in class (GetTutorial)
</faultstring>

</SOAP-ENV:Fault>
<soap:Body xmlns:m="http://www.example.org/stock">

<m:GetStockPriceResponse>
<m:Price>34.5</m:Price>

</m:GetStockPriceResponse>
</soap:Body>
</soap:Envelope>

SOAP Web Service Advantages

• Neutrality: SOAP supports any programming language and works in a
distributed enterprise environment

• Independence: SOAP messages can be processed on any platform. In
other terms, it can work on both Windows and Linux.

• Scalability: As SOAP uses HTTPS transport protocol, it can be scaled
easily. With HTTPS, SOAP overcomes firewall problems.

• Security: SOAP comes with its own security standard - WS security.

SOAP Web Service Disadvantages

• Slower: The use of XML formats in SOAP decreases the speed of requests
and responses significantly.

• Resource-consuming: SOAP requires long-length Payloads for transferring
even simple string messages. So, it needs larger bandwidth for exchanging
information.

• Firewall Latency: Since SOAP uses HTTPS protocol, firewall latency may
occur during data exchange. This is because firewalls analyze HTTPS
protocols usually.

• Hard Learning Curve: As SOAP works based on many protocols and
standards, developers must thoroughly understand these matters. For this,
they need to dive deep into these protocols and standards to know better.

• Tight Coupling: SOAP requires a tight coupling between the client and the
server. If any fault occurs on either side, it will affect both the client and the
server.

REST Web Service

• REST stands for REpresentational State Transfer.

• REST is web standards based architecture and uses HTTP Protocol.

• It revolves around resource where every component is a resource and
a resource is accessed by a common interface using HTTP standard
methods.

• REST was first introduced by Roy Fielding in 2000.

• Properties of REST, such as performance, scalability, and modifiability,
that enable services to work best on the Web.

• In the REST architectural style, data and functionality are considered
resources and are accessed using Uniform Resource Identifiers
(URIs), typically links on the Web.

Principles of REST Web Service

• URI Resource Identification: A RESTful web service exposes a set of resources
that identify the targets of the interaction with its clients. Resources are
identified by URIs, which provide a global addressing space for resource and
service discovery.

• Uniform Interface: Resources are manipulated using a fixed set of four create,
read, update, delete operations: PUT, GET, POST, and DELETE. PUT creates a new
resource, which can be then deleted by using DELETE. GET retrieves the current
state of a resource in some representation. POST transfers a new state onto a
resource.

• Self-Descriptive Messages: As resources are decoupled from their
representation, content can be accessed through a large number of formats like
HTML, PDF, JPEG, XML, plain text, JSON, etc.

• Use of Hyperlinks for State Interactions: Every interaction with a resource is
stateless; that is, request messages are self-contained. Stateful interactions are
based on the concept of explicit state transfer. Several techniques exist to
exchange state, such as URI rewriting, cookies, and hidden form fields.

RESTful Methods

Method Description

GET Retrieve information about the REST API resource

POST Create a REST API resource

PUT The PUT method replaces all current representations of the target resource with
the request payload.

PATCH The PATCH method applies partial modifications to a resource. Unlike PUT
Request, PATCH does partial update e.g. Fields that need to be updated by the
client, only that field is updated without modifying the other field. But PATCH is
not safe as it perform a non-read-only operation.

DELETE Delete a REST API resource or related component

REST Web Service Advantages

• Fast: RESTful Web Services are fast because there is no strict
specification like SOAP. It consumes less bandwidth and resource.

• Language and Platform independent: RESTful web services can be
written in any programming language and executed in any platform.

• Can use SOAP: RESTful web services can use SOAP web services as
the implementation.

• Permits different data format: RESTful web service permits different
data format such as Plain Text, HTML, XML and JSON.

SOAP vs REST
SOAP REST

SOAP stands for Simple Object Access Protocol. REST stands for REpresentational State Transfer.

It has both state and stateless design It has only a stateless design

SOAP is independent of transport protocols. And it

uses HTTP, SMTP, TCP, FTP, etc.

Only HTTP or HTTPS protocol can be used in REST

API

SOAP is a communication protocol REST API has a client-server architecture style

It uses only XML language with schemas, so

efficiency is not good as REST API.

Efficiency is good since it uses JSON, HTML , XML,

formats

Works slower Works faster

SOAP requires more bandwidth and resource than

REST.

REST requires less bandwidth and resource than

SOAP.

SOAP defines its own security. RESTful web services inherits security measures

from the underlying transport.

Need tight coupling between client and server,

which in turn increases complexity

REST API is usually separated from data storage

and the back end. That is why it is independent

and flexible.

Laravel

Introduction

• Laravel is a free and open-source PHP web framework created by Taylor

Otwell.

• Laravel following the model–view–controller (MVC) architectural pattern

and based on Symfony.

• Taylor Otwell created Laravel and first beta release was made available on

June 9, 2011

Features

• MVC Architecture Support: Laravel supports MVC architecture. It provides faster development
process as in MVC; one programmer can work on the view while other is working on the controller
to create the business logic for the web application.

• Libraries and Modularity: Laravel is very popular as some Object-oriented libraries, and pre-
installed libraries are added in this framework which includes – authentication module, bcrypt
password hashing, CSRF protection, Faker etc.

• ORM: Laravel incorporates a query builder which helps in querying databases using various simple
chain methods. It provides ORM (Object Relational Mapper) called Eloquent.

• E-mail: Laravel includes a mail class which helps in sending mail with rich content and attachments
from the web application.

• Authentication: User authentication is a common feature in web applications. Laravel eases
designing authentication as it includes features such as register, forgot password and send
password reminders.

Features

• Template Engine: Laravel uses the Blade Template engine, a lightweight template language

used to design hierarchical blocks and layouts with predefined blocks that include dynamic

content.

• Testability: Laravel includes features and helpers which helps in testing through various test

cases. This feature helps in maintaining the code as per the requirements.

• Secure Migration System: Laravel framework can expand the database without allowing the

developers to put much effort every time to make changes, and the migration process of

Laravel is very secure and full-proof. In the whole process, php code is used rather than SQL

code.

Project Structure

• app: This directory is the heart of the framework and contains backend

code of our web application like Controllers, Broadcasts, Providers, Custom

Artisan Commands, Middleware, etc. This directory further contains many

sub-directories like Console, Exception, Http, Provider etc.

• bootstrap: The bootstrap directory contains the app.php file which

bootstraps the framework. Bootstraps typically refers to the process of

initializing or starting up the framework or software system. This directory

also houses a cache directory which contains framework generated files for

performance optimization such as the route and services cache files.

• config: The config directory, as the name implies, contains all of your

application's configuration files.

Project Structure

• database: The database directory contains your database migrations,

model factories, and seeds.

• public: The public directory contains the index.php file, which is the entry

point for all requests entering your application and configures autoloading.

This directory also houses your assets such as images, JavaScript, and CSS.

• resources: The resources directory contains your views as well as your raw,

un-compiled assets such as CSS or JavaScript.

• routes: The routes directory contains all of the route definitions for your

application. By default, several route files are included with Laravel:

web.php, api.php, console.php, and channels.php.

Project Structure

• storage: The storage directory contains your logs, compiled Blade templates,
file based sessions, file caches, and other files generated by the framework..

• test: The tests directory contains your automated tests. Example PHPUnit unit
tests and feature tests are provided out of the box. Each test class should be
suffixed with the word Test.

• vendor: The vendor directory contains your Composer dependencies..

• .env: Laravel's default .env file contains some common configuration values
that may differ based on whether your application is running locally or on a
production web server.

• artisan: Artisan is the name of the command-line interface included with
Laravel. It provides a number of helpful commands for your use while
developing your application. It is driven by the powerful Symfony Console
component.

Important Commands

Command Purpose

composer global require laravel/installer Install laravel installer globally

laravel new PROJECT_NAME Create a new laravel project

php artisan serve

OR

php -S localhost:8000 -t public/

Run Lravel project

php artisan make:controller <name> Create a new Controller class

php artisan make:migration <name> Create a new migration file

php artisan make:model <name> Create a new Eloquent model class

